Folding transitions during assembly of the eukaryotic mRNA cap-binding complex.
نویسندگان
چکیده
The cap-binding protein eIF4E is the first in a chain of translation initiation factors that recruit 40S ribosomal subunits to the 5' end of eukaryotic mRNA. During cap-dependent translation, this protein binds to the 5'-terminal m(7)Gppp cap of the mRNA, as well as to the adaptor protein eIF4G. The latter then interacts with small ribosomal subunit-bound proteins, thereby promoting the mRNA recruitment process. Here, we show apo-eIF4E to be a protein that contains extensive unstructured regions, which are induced to fold upon recognition of the cap structure. Binding of eIF4G to apo-eIF4E likewise induces folding of the protein into a state that is similar to, but not identical with, that of cap-bound eIF4E. At the same time, binding of each of the binding partners of eIF4E modulates the kinetics with which it interacts with the other partner. We present structural, kinetic and mutagenesis data that allow us to deduce some of the detailed folding transitions that take place during the eIF4E interactions.
منابع مشابه
Ribosome Loading onto the mRNA Cap Is Driven by Conformational Coupling between eIF4G and eIF4E
The eukaryotic initiation factor 4G (eIF4G) is the core of a multicomponent switch controlling gene expression at the level of translation initiation. It interacts with the small ribosomal subunit interacting protein, eIF3, and the eIF4E/cap-mRNA complex in order to load the ribosome onto mRNA during cap-dependent translation. We describe the solution structure of the complex between yeast eIF4...
متن کاملCoupled Folding during Translation Initiation
The structure of the eukaryotic initiation factor eIF4E bound to a cognate domain of eIF4G and m(7)GDP in this issue of Cell shows that these factors undergo coupled folding to form a stable complex with high cap binding activity that promotes efficient ribosomal attachment to mRNA during translation initiation.
متن کاملeIF3d is an mRNA cap-binding protein required for specialized translation initiation
Eukaryotic mRNAs contain a 5′ cap structure that is crucial for recruitment of the translation machinery and initiation of protein synthesis. mRNA recognition is thought to require direct interactions between eukaryotic initiation factor 4E (eIF4E) and the mRNA cap. However, translation of numerous capped mRNAs remains robust during cellular stress, early development, and cell cycle progression...
متن کاملCap-dependent eukaryotic initiation factor-mRNA interactions probed by cross-linking.
Cap-dependent ribosome recruitment to eukaryotic mRNAs during translation initiation is stimulated by the eukaryotic initiation factor (eIF) 4F complex and eIF4B. eIF4F is a heterotrimeric complex composed of three subunits: eIF4E, a 7-methyl guanosine cap binding protein; eIF4A, a DEAD-box RNA helicase; and eIF4G. The interactions of eIF4E, eIF4A, and eIF4B with mRNA have previously been monit...
متن کاملIRP-1 binding to ferritin mRNA prevents the recruitment of the small ribosomal subunit by the cap-binding complex eIF4F.
Binding of iron regulatory proteins (IRPs) to IREs located in proximity to the cap structure of ferritin H- and L-chain mRNAs blocks ferritin synthesis by preventing the recruitment of the small ribosomal subunit to the mRNA. We have devised a novel procedure to examine the assembly of translation initiation factors (eIFs) on regulated mRNAs. Unexpectedly, we find that the cap binding complex e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of molecular biology
دوره 356 4 شماره
صفحات -
تاریخ انتشار 2006